What is the derivative of #-e^(3x^2)#?

1 Answer
Apr 19, 2018

#dy/dx=-6xe^(3x^2)#

Explanation:

By using chain rule for the function of function concept

#y=-e^(3x)^2)#

#y=-e^t#

#dy/dx=-e^t(dt)/(dx)#

#t=3x^2#

#t=3u#

#u=x^2#

#(du)/(dx)=2x#

#(dt)/(dx)=3)du)/(dx)#

#3(du/(dx)=3xx2x#

#(dt)/(dx)=3xx2x#

#3xx2x=6x#

#(dt)/(dx)=6x#

#dy/dx=-e^t(dt)/(dx)#

#dy/dx=-e^(3x^2)(6x)#

#dy/dx=-6xe^(3x^2)#