Prove that #(1+tan^2x)cos^2x=1#?

1 Answer
Apr 19, 2018

See below

Explanation:

We will use the following identities

#cos^2x+sin^2x=1#

#sec^nx=1/cos^nx#

#tan^nx=sin^nx/cos^nx#

Proof

We start by manipulating the first identity

#cos^2x+sin^2x=1#

#rArr cos^2/cos^2x+sin^2x/cos^2x=1/cos^2x#

#rArr1+tan^2x=sec^2x#

So

#(1+tan^2x)cos^2x=sec^2xcos^2x=1/cos^2xcos^2x=1# #color(white)(aaaa)square#