Prove that (1+tan^2x)cos^2x=1?

1 Answer
Apr 19, 2018

See below

Explanation:

We will use the following identities

cos^2x+sin^2x=1

sec^nx=1/cos^nx

tan^nx=sin^nx/cos^nx

Proof

We start by manipulating the first identity

cos^2x+sin^2x=1

rArr cos^2/cos^2x+sin^2x/cos^2x=1/cos^2x

rArr1+tan^2x=sec^2x

So

(1+tan^2x)cos^2x=sec^2xcos^2x=1/cos^2xcos^2x=1 color(white)(aaaa)square