What is int(sinx)/(cos^2 x) dxsinxcos2xdx?

2 Answers
Apr 21, 2018

secx+Csecx+C

Explanation:

intsinx/(cos^2(x))dxsinxcos2(x)dx

using u-substitution:
let u=cosxu=cosx. then du=-sinxdxdu=sinxdx or -du=sinxdxdu=sinxdx

substituting into the original integral:
int-1/u^2du1u2du

integrate that with power rule:

1/u+C1u+C

substitute u=cosxu=cosx:

1/cosx+C=secx+C1cosx+C=secx+C

Apr 21, 2018

secx+Csecx+C

Explanation:

Based on the "inverse" nature of derivatives and antiderivatives (found through integrals), if we know that d/dxsecx=secxtanxddxsecx=secxtanx, then intsecxtanxdx=secx+Csecxtanxdx=secx+C.

Here, using 1/cosx=secx1cosx=secx and tanx=sinx/cosxtanx=sinxcosx, we see that

intsinx/cos^2xdx=int1/cosx(sinx/cosx)dx=intsecxtanxdx=secx+Csinxcos2xdx=1cosx(sinxcosx)dx=secxtanxdx=secx+C