How do you implicitly differentiate xy- yln(x-y)= 4-x?

1 Answer
Apr 22, 2018

(dy)/dx=(-y-1+y/(x-y))/(x-ln(x-y)+y/(x-y))

Explanation:

d/dx(xy-yln(x-y))=d/dx(4-x)

y+x(dy)/dx-(dy)/dxln(x-y)-y/(x-y)*d/dx(x-y)=-1

y+x(dy)/dx-(dy)/dxln(x-y)-y/(x-y)(1-(dy)/dx)=-1

y+x(dy)/dx-(dy)/dxln(x-y)-y/(x-y)+y/(x-y)(dy)/dx=-1

now isolate (dy)/dx

x(dy)/dx-(dy)/dxln(x-y)+y/(x-y)(dy)/dx=-y-1+y/(x-y)

(dy)/dx(x-ln(x-y)+y/(x-y))=-y-1+y/(x-y)

(dy)/dx=(-y-1+y/(x-y))/(x-ln(x-y)+y/(x-y))