2x^3+4x^2-13x+62x3+4x2−13x+6 Can you factorise this please?
2 Answers
Explanation:
where:
Explanation:
Given:
2x^3+4x^2-13x+62x3+4x2−13x+6
Note that this does factorise much more easily if there is a typo in the question.
For example:
2x^3+4x^2-color(red)(12)x+6 = 2(x-1)(x^2+3x-6) = ...
2x^3+4x^2-13x+color(red)(7) = (x-1)(2x^2+6x-7) = ...
If the cubic is correct in the given form, then we can find its zeros and factors as follows:
f(x) = 2x^3+4x^2-13x+6
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 2704+17576-1536-3888-11232 = 3624
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=108f(x)=216x^3+432x^2-1404x+648
=(6x+4)^3-282(6x+4)+1712
=t^3-282t+1712
where
Trigonometric substitution
Since
Put:
t = k cos theta
where
Then:
0 = t^3-282t+1712
color(white)(0) = k^3 cos^3 theta - 282k cos theta+1712
color(white)(0) = 94k(4 cos^3 theta - 3 cos theta)+1712
color(white)(0) = 94k cos 3 theta+1712
So:
cos 3 theta = -1712/(94 k) = -1712/(188 sqrt(94)) = -(1712sqrt(94))/(188*94) = -214/2209 sqrt(94)
So:
3 theta = +-cos^(-1)(-214/2209 sqrt(94))+2npi
So:
theta = +- 1/3cos^(-1)(-214/2209 sqrt(94))+(2npi)/3
So:
cos theta = cos(1/3 cos^(-1)(-214/2209 sqrt(94))+(2npi)/3)
Which givens
t_n = k cos theta = 2sqrt(94) cos(1/3 cos^(-1)(-214/2209 sqrt(94))+(2npi)/3)" " forn = 0, 1, 2
Then:
x = 1/6(t-4)
So the three zeros of the given cubic are:
x_n = 1/6(-4+2sqrt(94) cos(1/3 cos^(-1)(-214/2209 sqrt(94))+(2npi)/3))
with approximate values:
x_0 ~~ 1.2643
x_1 ~~ -3.8764
x_2 ~~ 0.61211