How do you factor the trinomial #x^2+ 2x-4#?

2 Answers
Apr 24, 2018

The expression #x^2+2x-4# cannot be factored any further

Explanation:

there are no numbers you can multiply to get negative four and add to get #-2x#

Apr 24, 2018

The answer #x_2=-1+sqrt5# or #x_2=-1-sqrt5#

Explanation:

Follow the steps

#x_1=(-b+sqrt(b^2-4ac))/(2a)#

#x_2=(-b-sqrt(b^2-4ac))/(2a)#

from #x^2+2x-4=0#

#ax^2+bx+c=0#

a=1 b=2 c=-4

#x_1=(-2+sqrt(2^2+16))/(2)#

#x_1=-1+sqrt5#

or in the same way

#x_2=-1-sqrt5#