Let: A(5,2)A(5,2), B(3, -5)B(3,−5), C(-5, -1)C(−5,−1), then:
Shift CC to Origin(0, 0)(0,0), and also:
Adjust AA and BB to compensate for the shift accordingly:
C(-5+5 , -1+1) => C(0, 0)C(−5+5,−1+1)⇒C(0,0)
A(5+5, 2+1) => A(10, 3)A(5+5,2+1)⇒A(10,3)
B(3+5, -5+1) => C(8, -4)B(3+5,−5+1)⇒C(8,−4)
Then we can use the following:
Area of the triangle with vertices at:
C(0, 0)C(0,0), A(x_1, y_1)A(x1,y1), and B(x_2, y_2)B(x2,y2) is:
Area = 1/2|x_1 y_2 - x_2 y_1|12|x1y2−x2y1|
Therefore in this case we get:
A=1/2|(10)(-4)-(8)(3)|A=12|(10)(−4)−(8)(3)|
A= 1/2|-40-24|A=12|−40−24|
A=1/2|-64|A=12|−64|
A= 1/2*64A=12⋅64
A = 32A=32 Square Units