1+tanA/sinA+1+cotA/cosA=2(secA+cosecA)?

2 Answers
Apr 24, 2018

This should read: Show

{ 1 + tan A}/{sin A} + {1 + cot A}/{cos A} = 2(sec A + csc A)

Explanation:

I'll assume this is a problem to prove, and should read

Show { 1 + tan A}/{sin A} + {1 + cot A}/{cos A} = 2(sec A + csc A)

Let's just get the common denominator and add and see what happens.

{ 1 + tan A}/{sin A} + {1 + cot A}/{cos A}

= {cos A(1 + sin A/ cos A) + sin A(1+cos A/sin A)}/{sin A cos A}

= {cos A + sin A + sin A + cos A}/{sin A cos A}

= {2cos A }/{sin A cos A} + {2 sin A}/{sin A cos A}

= 2( 1/sin A + 1/cos A)

= 2(csc A + sec A)

= 2(sec A + csc A) quad sqrt

Apr 24, 2018

Verified below

Explanation:

(1+tanA)/sinA+(1+cotA)/cosA=2(secA+cscA)

Split the numerator:
1/sinA+tanA/sinA+1/cosA+cotA/cosA=2(secA+cscA)

Apply the reciprocal identities: 1/sinA= cscA, 1/cosA= secA:
cscA+tanA/sinA+secA+cotA/cosA=2(secA+cscA)

Apply the quotient identities: cotA= cosA/sinA, tanA=sinA/cosA:
cscA+cancel(sinA)/(cosA/cancel(sinA))+secA+cancel(cosA)/(sinA/cancel(cosA))=2(secA+cscA)

Apply the reciprocal identities:
cscA+secA+secA+cscA=2(secA+cscA)

Combine like terms:
2cscA+2secA=2(secA+cscA)

Factor out the 2:
2(secA+cscA)= 2(secA+cscA)