How to solve for t? 3e^t=5+8e^(-t)3et=5+8et

2 Answers
Apr 25, 2018

Solution: t ~~ 0.98t0.98

Explanation:

3 e^t=5+8 e^(-t)3et=5+8et Multiplying by e^tet on both sides we get,

3 e^(2 t)=5 e^t+8 3e2t=5et+8 or

3 e^(2 t) - 5 e^t- 8 = 03e2t5et8=0 or

3 e^(2 t) + 3 e^t -8 e^t - 8 = 03e2t+3et8et8=0 or

3 e^ t( e^t +1) - 8( e^t + 1) = 03et(et+1)8(et+1)=0 or

( e^t +1)(3 e^t - 8) = 0(et+1)(3et8)=0

:. e^t = -1 or 3 e^t =8 ; e^t cannot be negative number

:. e^t =8/3 , taking natural log on both sides we get,

t ln e = ln 8 - ln 3 :. t = ln 8 - ln 3 ~~ 0.98 (2 dp)[ ln e=1]

Solution: t ~~ 0.98 [Ans]

Apr 25, 2018

t=ln(8/3)~~0.9808

Explanation:

Here,

3e^t=5+8e^-t

=>3e^t=5+8/(e^t)

=>3(e^t)^2=5e^t+8

=>3(e^t)^2-5e^t-8=0

=>3(e^t)^2+3e^t-8e^t-8=0

=>3e^t(e^t+1)-8(e^t+1)=0

=>(e^t+1)(3e^t-8)=0

=>e^t+1=0 or 3e^t-8=0

=>e^t=-1 or e^t=8/3

(i)e^t=-1 <0=>e^t !inR^+

(ii)e^t=8/3=>t=ln(8/3)~~0.9808