How is -1+i√3 written in polar form?

Please show steps

2 Answers
Apr 26, 2018

See explanation.

Explanation:

First we need to calculate the module:

|z|=sqrt(a^2+b^2)=sqrt((-1)^2+sqrt(3)^2)=sqrt(1+3)=2|z|=a2+b2=(1)2+32=1+3=2

Now we have:

z=|z|*(cosvarphi+isinvarphi)z=|z|(cosφ+isinφ)

Here |z|=2|z|=2, so

cos varphi=(Re(z))/|z|=-1/2cosφ=Re(z)|z|=12

The angle, for which cosvarphi=-1/2cosφ=12 is varphi=120^oφ=120o, so now we can write the complex number in trigonometric form:

z=2*(cos120^o + isin120^o)z=2(cos120o+isin120o)

Apr 26, 2018

In polar form expressed as 2(cos 2.0944+i sin 2.0944)2(cos2.0944+isin2.0944)

Explanation:

Let Z=a+i b ; Z=-1+ i sqrt 3 ; a= -1 ,b =sqrt 3 Z=a+ib;Z=1+i3;a=1,b=3 ;

Z=-1+ i sqrt 3 Z=1+i3 is in 2nd quadrant

Modulus |Z|=sqrt(a^2+b^2)=(sqrt((-1)^2+ (sqrt3)^2)) =2 |Z|=a2+b2=((1)2+(3)2)=2

tan alpha =|b/a|= (sqrt 3/ -1) = sqrt 3 :. alpha =tan^-1(sqrt3)

or alpha~~ 1.047198; theta is on 2 nd quadrant

:. theta=pi- alpha= 2.094395 :. Argument : theta ~~2.0944

In polar form expressed as

|Z|*(cos theta+i sin theta) or 2(cos 2.0944+i sin 2.0944)[Ans]