Evaluate the integral with hyperbolic or trigonometric substitution. ?

enter image source here

2 Answers
Apr 26, 2018

#int1/(1+9x^2)dx=1/3arctan3x+"c"#

Explanation:

For #int1/(1+9x^2)dx=int1/(1+(3x)^2)dx#, let

#u=3x# and #du=3dx#

Then

#int1/(1+9x^2)dx=1/3int1/(1+u^2)du#

This is a standard integral which evaluates to

#1/3arctanu+"c"=1/3arctan3x+"c"#

Apr 26, 2018

# 1/3arc tan3x+C.#

Explanation:

Let, #I=int1/(1+9x^2)dx#.

Knowing that #tan^2y+1=sec^2y#, we subst. #3x=tany#.

#:. 3dx=sec^2ydy#.

#:. I=int1/(1+tan^2y)*sec^2y/3dy#,

#=1/3intsec^2y/sec^2ydy#,

#=1/3int1dy#,

#=1/3y#.

# rArr I=1/3arc tan3x+C.#