How to verify Cos2x/(1+sin2x)=tan(pi/4-x)? Trigonometry 2 Answers Ratnaker Mehta · Dean R. Apr 26, 2018 Please see a Proof in the Explanation. Explanation: (cos2x)/(1+sin2x)cos2x1+sin2x, =(cos^2x-sin^2x)/{(cos^2x+sin^2x)+2sinxcosx}=cos2x−sin2x(cos2x+sin2x)+2sinxcosx, ={(cosx+sinx)(cosx-sinx)}/(cosx+sinx)^2=(cosx+sinx)(cosx−sinx)(cosx+sinx)2, =(cosx-sinx)/(cosx+sinx)=cosx−sinxcosx+sinx, ={cosx(1-sinx/cosx)}/{cosx(1+sinx/cosx)}=cosx(1−sinxcosx)cosx(1+sinxcosx), =(1-tanx)/(1+tanx)=1−tanx1+tanx, ={tan(pi/4)-tanx}/{1+tan(pi/4)*tanx} quad [because tan(pi/4)=1], =tan(pi/4-x), as desired! Answer link Dean R. Apr 26, 2018 First we remind ourselves cos(2x)=cos (x+x)=cos^2x - sin^2x and sin(2x) = 2 sin x cos x. Now let's approach from the other side. tan(pi/4 -x ) = {tan(pi/4) - tan x } / {1 + tan(pi/4) tan x} = {1 - sin x/cos x} / {1 + sin x/cos x} = {cos x - sin x}/{cos x + sin x} We know cos 2x=cos^2x - sin^2 x so our move is: = {cos x - sin x}/{cos x + sin x} cdot {cos x + sin x}/{cos x + sin x} = { cos^2 x - sin^2 x}/{cos^2x + 2 cos x sin x + sin^2 x } = {cos(2x) }/{1 + sin(2x)} quad sqrt Answer link Related questions How do I determine the molecular shape of a molecule? What is the lewis structure for co2? What is the lewis structure for hcn? How is vsepr used to classify molecules? What are the units used for the ideal gas law? How does Charle's law relate to breathing? What is the ideal gas law constant? How do you calculate the ideal gas law constant? How do you find density in the ideal gas law? Does ideal gas law apply to liquids? Impact of this question 27048 views around the world You can reuse this answer Creative Commons License