How to verify Cos2x/(1+sin2x)=tan(pi/4-x)?

2 Answers

Please see a Proof in the Explanation.

Explanation:

(cos2x)/(1+sin2x)cos2x1+sin2x,

=(cos^2x-sin^2x)/{(cos^2x+sin^2x)+2sinxcosx}=cos2xsin2x(cos2x+sin2x)+2sinxcosx,

={(cosx+sinx)(cosx-sinx)}/(cosx+sinx)^2=(cosx+sinx)(cosxsinx)(cosx+sinx)2,

=(cosx-sinx)/(cosx+sinx)=cosxsinxcosx+sinx,

={cosx(1-sinx/cosx)}/{cosx(1+sinx/cosx)}=cosx(1sinxcosx)cosx(1+sinxcosx),

=(1-tanx)/(1+tanx)=1tanx1+tanx,

={tan(pi/4)-tanx}/{1+tan(pi/4)*tanx} quad [because tan(pi/4)=1],

=tan(pi/4-x), as desired!

Apr 26, 2018

First we remind ourselves cos(2x)=cos (x+x)=cos^2x - sin^2x and sin(2x) = 2 sin x cos x. Now let's approach from the other side.

tan(pi/4 -x ) = {tan(pi/4) - tan x } / {1 + tan(pi/4) tan x}

= {1 - sin x/cos x} / {1 + sin x/cos x}

= {cos x - sin x}/{cos x + sin x}

We know cos 2x=cos^2x - sin^2 x so our move is:

= {cos x - sin x}/{cos x + sin x} cdot {cos x + sin x}/{cos x + sin x}

= { cos^2 x - sin^2 x}/{cos^2x + 2 cos x sin x + sin^2 x }

= {cos(2x) }/{1 + sin(2x)} quad sqrt