Here,
Cot^2x = -2cotx -1
=>cot^2x+2cotx+1=0
=>(cotx+1)^2=0
=>cotx+1=0
color(red)(=>cotx=-1...(A)
=>tanx=-1... tocosx!=0
=>tanx=tan(-pi/4)
color(blue)(=>x=kpi-pi/4,kinZZ...to(B)
We know that ,the range of cot^-1x, is :(0.pi)
Now from (A)
cotx=-1=>x=cot^-1(-1)!=-pi/4...toIV^(th)Quadrant
and-pi/4!in(0,pi)
So, color(red)(cot^-1(-1)=pi-pi/4=(3pi)/4...toII^(nd)Quadrant
Hence, from (B)
x=(2k+1)pi-pi/4,kinZZ
Note:
color(blue)(x={color(red)(kpi)-pi/4,kinZZ}
:.x={color(red)((2k+1)pi)-pi/4,kinZZ}uu{color(red)((2k)pi)-
pi/4,kinZZ}
color(white)(.................)color(red)(II^(nd)Quadrant)color(white)
(...................)color(red)(IV^(th)Quadrant)