This is a trigonometric equation I can't figure out? cot^2x = -2cotx -1cot2x=2cotx1

1 Answer
Apr 27, 2018

x=(2k+1)pi-pi/4,kinZZ

Explanation:

Here,

Cot^2x = -2cotx -1

=>cot^2x+2cotx+1=0

=>(cotx+1)^2=0

=>cotx+1=0

color(red)(=>cotx=-1...(A)

=>tanx=-1... tocosx!=0

=>tanx=tan(-pi/4)

color(blue)(=>x=kpi-pi/4,kinZZ...to(B)

We know that ,the range of cot^-1x, is :(0.pi)

Now from (A)

cotx=-1=>x=cot^-1(-1)!=-pi/4...toIV^(th)Quadrant

and-pi/4!in(0,pi)

So, color(red)(cot^-1(-1)=pi-pi/4=(3pi)/4...toII^(nd)Quadrant

Hence, from (B)

x=(2k+1)pi-pi/4,kinZZ

Note:

color(blue)(x={color(red)(kpi)-pi/4,kinZZ}

:.x={color(red)((2k+1)pi)-pi/4,kinZZ}uu{color(red)((2k)pi)- pi/4,kinZZ}
color(white)(.................)color(red)(II^(nd)Quadrant)color(white) (...................)color(red)(IV^(th)Quadrant)