How do you solve sin2θ=-cosθ ?

2 Answers
Apr 27, 2018

theta={(2k+1)pi/2,kinZZ}uu{kpi-(-1)^k*pi/6,kinZZ}

Explanation:

We know that,

color(red)(sinx=sinalpha=>x=kpi+(-1)^k*alpha,kinZZ

Here,

sin2theta=-costheta

=>sin2theta+costheta=0

=>2sinthetacostheta+costheta=0

=>costheta(2sintheta+1)=0

=>costheta=0 or 2sintheta+1=0

=costheta=0 or sintheta=-1/2

(i)color(blue)(costheta=0=>theta=(2k+1)pi/2,kinZZ

(ii)sintheta=-1/2=>sintheta=sin(-pi/6)

=>theta=kpi+(-1)^k(-pi/6),kinZZ

=>color(blue)(theta=kpi-(-1)^k(pi/6),kinZZ

Hence,

theta={(2k+1)pi/2,kinZZ}uu{kpi-(-1)^k*pi/6,kinZZ}

Apr 27, 2018

Within the interval of 0 < theta < 2pi

theta=pi/2, (3pi)/2, (7pi)/6, (11pi)/6

Explanation:

.

We use the double-angle formula:

sin2theta=-costheta

2sinthetacostheta=-costheta

We move all terms to one side.

2sinthetacostheta+costheta=0

We factor out costheta

costheta(2sintheta+1)=0

Then, we set each piece equal to 0 and solve for theta.

costheta=0, :. theta=pi/2, (3pi)/2

2sintheta+1=0

sintheta=-1/2, :. theta=(7pi)/6, (11pi)/6