What is the frequency of f(theta)= sin 2 t - cos 5 t f(θ)=sin2tcos5t?

2 Answers
Apr 28, 2018

2pi2π

Explanation:

Period of sin 2t --> (2pi)/2 = pi2π2=π
Period of cos 5t -->(2pi)/52π5
Period of f(t) --> least common multiple of pi and (2pi)/5.πand2π5.

pi .............x 2 ... --> 2pi
(2pi)/5 ....x 5 ......--> 2pi

Period of f(t) is (2pi)(2π)

Apr 28, 2018

The frequency is =1/(2pi)=12π

Explanation:

The frequency is f=1/Tf=1T

The period is =T=T

A function f(theta)f(θ) is T-periodic iif

f(theta)=(theta+T)f(θ)=(θ+T)

Therefore,

sin(2t)-cos(5t)=sin2(t+T)-cos5(t+T)sin(2t)cos(5t)=sin2(t+T)cos5(t+T)

Therefore,

{(sin (2t)=sin2(t+T)),(cos(5t)=cos5(t+T)):}

<=>, {(sin2t=sin(2t+2T)),(cos5t=cos(5t+5T)):}

<=>, {(sin2t=sin2tcos2T+cos2tsin2T),(cos5t=cos5tcos5T-sin5tsin5T):}

<=>, {(cos2T=1),(cos5T=1):}

<=>, {(2T=2pi=4pi),(5T=2pi=4pi=6pi=8pi=10pi):}

<=>, {(T=4/2pi=2pi),(T=10/5pi=2pi):}

The period is =2pi

The frequency is

f=1/(2pi)

graph{sin(2x)-cos(5x) [-3.75, 18.75, -7.045, 4.205]}