Y= sin (2x^2 - 3e^x) Find dy/dx?

2 Answers
Apr 28, 2018

#dy/dx= cos(2x^2-3e^x) * (4x-3e^x)#

Explanation:

#y=sin (2x^2 - 3e^x)#

#dy/dx= cos(2x^2-3e^x) * (4x-3e^x)#

Apr 28, 2018

#(dy)/(dx)=(4x-3e^x)cos(2x^2-3e^x)#

Explanation:

Here,

#y= sin (2x^2 - 3e^x)#

Let, #u=2x^2-3e^x =>(du)/(dx)=4x-3e^x#

#and y=sinu=>(dy)/(du)=cosu#

#"Using "color(blue)"Chain Rule"#

#color(blue)((dy)/(dx)=(dy)/(du)*(du)/(dx).#

#=>(dy)/(dx)=cosuxx(4x-3e^x),where, u=2x^2-3e^x#

#=>(dy)/(dx)=cos(2x^2-3e^x)xx(4x-3e^x)#

#=>(dy)/(dx)=(4x-3e^x)cos(2x^2-3e^x)#