The number of solutions of log(2x)=2log(4x-15)is?

1 Answer
Apr 29, 2018

x=9/2 =>One real solution.

Explanation:

log(2x)=2log(4x-15)

2log(4x-15)-log(2x)=0

log(4x-15)^2-log(2x)=0

log[(16x^2-120x+225)/(2x)]=0

(16x^2-120x+225)/(2x)=10^0=1

16x^2-120x+225=2x

16x^2-122x+225=0

16x^2-72x-50x+225=0

8x(2x-9)-25(2x-9)=0

(8x-25)(2x-9)=0

x=25/8, 9/2 => reject x=25/8, since it makes 4x -15 a

negative number thus causing an undefined status.

x=9/2 the only valid solution.