How do you find the area between #y=-3/8x(x-8), y=10-1/2x, x=2, x=8#?

2 Answers
Apr 29, 2018

Show below

Explanation:

#y_1=-3/(8x(x-8))#

#y_2=10-1/(2x)#

enter image source here

this is a sketch for your functions you can use this website to sketch them[www.desmos.com]

the area between the two curve equal

#A=int_2^8(y_2-y_1)*dx#

#A=int_2^8(10-1/(2x))-(-3/(8x(x-8)))*dx#

#A=int_2^8(10-1/(2x))+(3/(8x(x-8)))*dx#

#A=int_2^8(10-1/(2x))*dx+int_2^8(3/(8x(x-8)))*dx#

#int(10-1/(2x))*dx=10*x-ln(abs(x))/2#

#int_2^8(10-1/(2x))*dx=(ln(2)-40)/2-(ln(8)-160)/2=-(ln(8)-ln(2)-120)/2=59.31#

#int(3/(8x(x-8)))=-(3*(ln(abs(x))-ln(abs(x-8))))/64=-3((ln(abs(x))-(((lnx/ln8))))/64)#

#int_2^8(3/(8x(x-8)))=#

then complete the steps normally

Apr 30, 2018

#18 units^2#

Explanation:

#x=2# and #x=8# are two vertical lines and #y=10-1/2x# is a diagonal line that passes through #x=2# at (2,9) and #x=8# at (8,6). This gives us a trapezium that has two parallel sides of length 9 and 6 and a height of 6 so the area would be

#A=1/2(9+6)6=45 units^2#

#y=-3/8x(x-8)# #=> y=-3/8x^2+3x#

This is an #nn# shaped parabola that passes through #x=2 and x=8# . If we find the area under the curve by intergration

#int_2^8# #-3/8x^2+3x# #dx#

#[-1/8x^3+3/2x^2]_2^8#

#[-512/8 +192/2] - [-8/8 +12/2]#

#32-5=27#

So the area enclosed by all four graphs is the area of the trapezium less the area under the curve.

45 - 27 = 18