E^4x + 3e^-4x = 6 x=?

e^4x + 3e^-4x = 6

2 Answers
May 1, 2018

#x=1/4ln(3+-sqrt(6))#

#x_1~~0.42#

#x_2~~-0.15#

Explanation:

Given: #e^(4x)+3e^(-4x)=6#.

Let #u=e^(4x)#.

Notice how,

#e^(4x)+3e^(-4x)=6#

#<=>e^(4x)+3e^((4x)*-1)=6#

Therefore, replacing #4x# by #u#, we get:

#u+3u^-1=6#

#u+3/u=6#

Multiply by #u^2# to get:

#u^2+3=6u#

#u^2-6u+3=0#

Using the quadratic formula, we get:

#u=(6+-sqrt(36-4*1*3))/2#

#=(6+-sqrt(36-12))/2#

#=(6+-sqrt(24))/2#

#=(6+-2sqrt(6))/2#

Replacing #u=e^(4x)# back, we get:

#e^(4x)=(6+-2sqrt(6))/2#

#=3+-sqrt(6)#

Take natural logs on both sides.

#ln(e^(4x))=ln(3+-sqrt(6))#

#4xlne=ln(3+-sqrt(6))#

#4x=ln(3+-sqrt(6))#

#:.x=1/4ln(3+-sqrt(6))#

May 1, 2018

Do you mean the following expression? #e^(4x) + 3e^(-4x) = 6#

Explanation:

It is important that the expression becomes right. But rather than do the whole calculus, I'll lead you on your way.

To solve such an expression, please note that #e^(4x)# is common to each term in the expression, so you can write:
#y=e^(4x)#

That gives #y -6+3y^(-1)=0#
Get rid of y in the numerator place by multiplying each term with y. This gives the following 2nd degree equation:
#y^2 -6y+3=0#
You solve this equation the normal way, which gives you two solutions
#y_1=3+√6# (= 5.45)
#y_2=3 -√6# (=0.55)

As #y=e^(4x)#, you find that
#4x=ln(y)#, i.e.
#x_1 =ln(y_1)/4# = ln(3+√6) (=0.42)
#x_2 =ln(y_2)/4# = ln(3-√6) (=-0.15)

Check:
#e^(4x_1) + 3e^(-4x_1) - 6#
=#e^(1.70) + 3e^(-1.70) - 6 = 0# -> check
#e^(4x_2) + 3e^(-4x_2) - 6#
=#e^(-0.60) + 3e^(0.60) - 6 = 0# -> check