E^4x + 3e^-4x = 6 x=?

e^4x + 3e^-4x = 6

2 Answers
May 1, 2018

x=1/4ln(3+-sqrt(6))x=14ln(3±6)

x_1~~0.42x10.42

x_2~~-0.15x20.15

Explanation:

Given: e^(4x)+3e^(-4x)=6e4x+3e4x=6.

Let u=e^(4x)u=e4x.

Notice how,

e^(4x)+3e^(-4x)=6e4x+3e4x=6

<=>e^(4x)+3e^((4x)*-1)=6e4x+3e(4x)1=6

Therefore, replacing 4x4x by uu, we get:

u+3u^-1=6u+3u1=6

u+3/u=6u+3u=6

Multiply by u^2u2 to get:

u^2+3=6uu2+3=6u

u^2-6u+3=0u26u+3=0

Using the quadratic formula, we get:

u=(6+-sqrt(36-4*1*3))/2u=6±364132

=(6+-sqrt(36-12))/2=6±36122

=(6+-sqrt(24))/2=6±242

=(6+-2sqrt(6))/2=6±262

Replacing u=e^(4x)u=e4x back, we get:

e^(4x)=(6+-2sqrt(6))/2e4x=6±262

=3+-sqrt(6)=3±6

Take natural logs on both sides.

ln(e^(4x))=ln(3+-sqrt(6))ln(e4x)=ln(3±6)

4xlne=ln(3+-sqrt(6))4xlne=ln(3±6)

4x=ln(3+-sqrt(6))4x=ln(3±6)

:.x=1/4ln(3+-sqrt(6))

May 1, 2018

Do you mean the following expression? e^(4x) + 3e^(-4x) = 6

Explanation:

It is important that the expression becomes right. But rather than do the whole calculus, I'll lead you on your way.

To solve such an expression, please note that e^(4x) is common to each term in the expression, so you can write:
y=e^(4x)

That gives y -6+3y^(-1)=0
Get rid of y in the numerator place by multiplying each term with y. This gives the following 2nd degree equation:
y^2 -6y+3=0
You solve this equation the normal way, which gives you two solutions
y_1=3+√6 (= 5.45)
y_2=3 -√6 (=0.55)

As y=e^(4x), you find that
4x=ln(y), i.e.
x_1 =ln(y_1)/4 = ln(3+√6) (=0.42)
x_2 =ln(y_2)/4 = ln(3-√6) (=-0.15)

Check:
e^(4x_1) + 3e^(-4x_1) - 6
=e^(1.70) + 3e^(-1.70) - 6 = 0 -> check
e^(4x_2) + 3e^(-4x_2) - 6
=e^(-0.60) + 3e^(0.60) - 6 = 0 -> check