What is the derivative of (3+2x)^(1/2)?

2 Answers
May 2, 2018

1/((3+2x)^(1/2))

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

rArrd/dx((3+2x)^(1/2))

=1/2(3+2x)^(-1/2)xxd/dx(3+2x)

=1(3+2x)^(-1/2)=1/((3+2x)^(1/2))

May 2, 2018

1/(sqrt(3+2x))

Explanation:

If
f(x)=(3+2x)^(1/2)=(sqrt(3+2x))

(apply the chain rule)

u=3+2x

u'=2

f(u)=u^(1/2)

f'(u)=(1/2) (u)^(-1/2) times u'

Hence:

f'(x)=(1/2) (3+2x)^(-1/2) times 2

f'(x)=(3+2x)^(-1/2)

f'(x)=(1)/(sqrt(3+2x))