Given #F = (Gm_1m_2)/d#, how do you solve for #G#?

2 Answers
May 2, 2018

#G=(F*d)/((m1)(m2))#

Explanation:

#F=(G(m1)\(m2))/d#

#F*d=G(m1)\(m2)#

#(F*d)/((m1)(m2))=G#

May 2, 2018

#G = (Fd)/(m_1m_2)#

Explanation:

#F = (Gm_1m_2)/d#

Making #G# the subject of formula;

#F/1 = (Gm_1m_2)/d#

Cross multiplying..

#F xx d = Gm_1m_2 xx 1#

#Fd = Gm_1m_2#

Divide both sides by #m_1m_2#

#(Fd)/(m_1m_2) = (Gm_1m_2)/(m_1m_2)#

#(Fd)/(m_1m_2) = (Gcancel(m_1m_2))/cancel(m_1m_2)#

#(Fd)/(m_1m_2) = G#