Please solve q18 ?

enter image source here

1 Answer
May 2, 2018

rarrcos^6x+8cos^2x=4+4cos^4xcos6x+8cos2x=4+4cos4x

Explanation:

rarrsinx+sin^2x+sin^3x=1sinx+sin2x+sin3x=1

rarrsinx(1+sin^2x)=1-sin^2x=cos^2xsinx(1+sin2x)=1sin2x=cos2x

rarrsin^2x(1+2sin^2x+sin^4x)=cos^4xsin2x(1+2sin2x+sin4x)=cos4x

rarrsin^2x(1+2sin^2x+(1-cos^2x)^2)=cos^4xsin2x(1+2sin2x+(1cos2x)2)=cos4x

rarrsin^2x(1+2(1-cos^2x)+1-2cos^2x+cos^4x)=cos^4xsin2x(1+2(1cos2x)+12cos2x+cos4x)=cos4x

rarrsin^2x(1+2-2cos^2x+1-2cos^2x+cos^4x)=cos^4xsin2x(1+22cos2x+12cos2x+cos4x)=cos4x

rarr(1-cos^2x)(4-4cos^2x+cos^4x)=cos^4x(1cos2x)(44cos2x+cos4x)=cos4x

rarr4-4cos^2xcancel(+cos^4x)-4cos^2x+4cos^4x-cos^6x=cancelcos^4x

rarrcos^6x+8cos^2x=4+4cos^4x