How do you determine the limit of (x-pi/2)tan(x) as x approaches pi/2?

2 Answers
May 3, 2018

lim_(xrarr(pi)/2)(x-(pi)/2)tanx=-1

Explanation:

lim_(xrarr(pi)/2)(x-(pi)/2)tanx

(x-(pi)/2)tanx

  • x->(pi)/2 so cosx!=0

= (x-(pi)/2)sinx/cosx

(xsinx-(πsinx)/2)/cosx

So we need to calculate this limit

lim_(xrarrπ/2)(xsinx-(πsinx)/2)/cosx=_(DLH)^((0/0))

lim_(xrarrπ/2)((xsinx-(πsinx)/2)')/((cosx)' =

-lim_(xrarrπ/2)(sinx+xcosx-(πcosx)/2)/sinx =

-1

because lim_(xrarrπ/2)sinx=1 ,

lim_(xrarrπ/2)cosx=0

Some graphical help enter image source here

May 3, 2018

For an algebraic solution, please see below.

Explanation:

(x-pi/2)tanx = (x-pi/2)sinx/cosx

= (x-pi/2)sinx/sin(pi/2-x)

= (-(pi/2-x))/sin(pi/2-x) sinx

Take limit as xrarrpi/2 using lim_(trarr0)t/sint = 1 to get

lim_(xrarrpi/2)(x-pi/2)tanx = -1