Find the average value of the cost function C(x)=3x√x+10 on the interval [0,81].?

1 Answer
May 4, 2018

Value_(avg)~~959.1

Explanation:

The average value of a function f(x) is given by:

Value_(avg) = 1/(b-a)int_a^bf(x) dx

In this case:

Value_(avg)=1/(81-0)int_0^(81)3xsqrt(x+10)dx

=3/(81)int_0^(81)xsqrt(x+10) dx

Let: u=x+10, du=dx, x=u-10:

=1/(27)int_0^(81)(u-10)*u^(1/2) du

=1/(27)*2/(15) u^(3/2)(3u-50)[0,81]

=1/(27)*2/(15)(x+10)^(3/2)(3x-20)[0, 81]

=2/(405)[(223)(91)^(3/2)- (-20)(10)^(3/2)]

=2/(405)[20293sqrt(91)+200sqrt(10)]

~~959.1