How do you find the limit of (x-pi)/(sinx)xπsinx as x approaches pi?

1 Answer
May 5, 2018

The answer
lim_(xrarrpi)(x-pi)/(sinx)=lim_(xrarrpi)1/cosx=1/-1=-1

Explanation:

show the steps

lim_(xrarrpi)(x-pi)/(sinx) Direct compensation product equal (0/0)

we must use L'Hopital's Rule

lim_(xrarra)[f'(x)]/[g'(x)] if the direct compensation product equal (0/0)

in your question
f(x)=x-pi

f'(x)=1

g(x)=sinx

g'(x)=cosx

lim_(xrarrpi)(x-pi)/(sinx)=lim_(xrarrpi)1/cosx=1/-1=-1