How do you find the limit of (x-pi)/(sinx)x−πsinx as x approaches pi? Calculus Limits Determining Limits Algebraically 1 Answer James · Jacobi J. May 5, 2018 The answer lim_(xrarrpi)(x-pi)/(sinx)=lim_(xrarrpi)1/cosx=1/-1=-1 Explanation: show the steps lim_(xrarrpi)(x-pi)/(sinx) Direct compensation product equal (0/0) we must use L'Hopital's Rule lim_(xrarra)[f'(x)]/[g'(x)] if the direct compensation product equal (0/0) in your question f(x)=x-pi f'(x)=1 g(x)=sinx g'(x)=cosx lim_(xrarrpi)(x-pi)/(sinx)=lim_(xrarrpi)1/cosx=1/-1=-1 Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 9315 views around the world You can reuse this answer Creative Commons License