How do you simplify #(6w ^ { 2} - w - 7) ( w ^ { 2} + 2w - 5)#?

1 Answer
May 5, 2018

#omega = 7/6 , -1, (sqrt6 - 1) and (-sqrt6 - 1)#

Explanation:

Let #omega# be #x#

Assuming that this equation = 0

#:.# As per the question,

#(6x^2 - x - 7)(x^2 + 2x - 5)# =0

#(6x^2 +6x - 7x - 7)(x + sqrt6 +1)(x - sqrt6 + 1)# = 0

#[6x(x + 1) -7(x + 1)][(x + sqrt6 +1)(x - sqrt6 + 1)# = 0

#[(6x-7)(x+1)][(x + sqrt6 +1)(x - sqrt6 + 1)# = 0

#:.# #x = 7/6 , -1, (sqrt6 - 1) and (-sqrt6 - 1)#

But #x = omega#

#:.# #omega = 7/6 , -1, (sqrt6 - 1) and (-sqrt6 - 1)#