How to calculate the integral?

int_0^(pi/3)sinx * e^(-3x)dx

1 Answer
May 5, 2018

I=1/10[1-(3sqrt3+1)/(2e^pi)]
I~~-2.214069

Explanation:

Note:

color(red)(inte^(ax)sinbxdx=(e^(ax))/(a^2+b^2)(asinbx-bcosbx)+c

Take,a=-3and b=1.

inte^(-3x)sin(1x)dx=(e^(-3x))/((-3)^2+1^2)(-3sinx- 1cos(1x))+c

color(blue)(inte^(-3x)sinxdx=(e^(-3x))/(10)(-3sinx-cosx)+c...to (1)

Here,

I=int_0^(pi/3) sinx *e^(-3x)dx

I=int_0^(pi/3)(e^(-3x))sinxdx

Using (1),we get

I=[(e^(-3x))/(10)(-3sinx-cosx)]_0^(pi/3)

I=[(e^(-3xxpi/3))/10(-3sin(pi/3)-cos(pi/3)]-[e^0/10(-3(0)-1)]

I=[e^-pi/10(-3xxsqrt3/2-1/2)]-[1/10(-1)]

I=e^-pi/10(-(3sqrt3+1)/2)+1/10

I=1/10[1-(3sqrt3+1)/(2e^pi)]

I~~1/10[1-23.14069]

I~~1/10[-22.14069]

I~~-2.214069