How do you evaluate sin215+sin75cos236+cos254?

1 Answer
May 6, 2018

(64)(23)

Explanation:

f(x)=ND=sin215+sin75cos236+cos254
First, evaluate the denominator D. Since,
cos(54)=cos(9054)=sin36
cos254=sin236 --> Therefor:
D=cos236+sin236=1
Next, evaluate the numerator N.
Since sin 75 = cos (90 - 75) = cos 15. Therefor,-->
N=sin15(sin15+cos15)=sin15(2cos(1545))
N=sin15(2cos(30))=(2)(32)sin15=
N=(62)sin15.
Find sin 15 by using trig identity
2sin2a=1cos2a. In this case -->
2sin215=1cos30=132=232
sin215=234
sin15=232 (since sin 15 is positive)
Finally
f(x)=ND=(64)(23)