Find the exact solutions on the interval from (0,3pi) 4sin^2x+4cosx-5=0?

2 Answers
May 9, 2018

use that #\sin^2(x)=1-\cos^2(x)#

Explanation:

Then you will get #1-cos^2(x)=1-cos^2(x)# and in the end #3=3cos^2(x)# which is easy to solve

Aug 10, 2018

# +- 60^o, +- 120^o, +- 240^o, +-300^o, +-420^o and +-480^o.#

Explanation:

#4 ( 1 - cos^2x ) +4 cos x - 5 = 0 giving

(2 cos x - 1 )^2= 0. So,

#cos x = 1/2 = cos ( 60^o )# and so

#x = 2k( 180^o) +- 60^o#

#= - 480^o, - 420^o, -300^o, -240^o, -120^o, - 60^o, 60^o, 120^o, 240^o, 300^o, 420^o, 480^o in ( 0, 540^o)#

#= +- 60^o, +- 120^o, +- 240^o, +-300^o, +-420^o and +-480^o.#