cot^-1x + cot^-1(1+x)=pi/4?

1 Answer
May 10, 2018

x=-1, 2

Explanation:

cot^(-1)(x)+cot^(-1)(1+x)=pi/4

Take tan of both sides:

tan[cot^(-1)(x)+cot^(-1)(1+x)]=tan(pi/4)

Expand the left side using the sum formula:

tan(x+y) = [tan(x)+tan(y)]/[1-tan(x)tan(y)]

So in this case:

[tan (cot^(-1)(x))+tan(cot^(-1)(1+x))]/[1-tan(cot^(-1)(x))*tan(cot^(-1)(1+x))]=1

Simplify:

[1/x+1/(x+1)]/[1-1/x*1/(x+1)]=1

(x+1+x)/[x(x+1)]= 1-1/(x^2+x)

(2x+1)/(x^2+x)=(x^2+x-1)/(x^2+x)

x^2-x-2=0

(x+1)(x-2)=0

x=-1, 2