How to find the general solution 5 sin(x)+2 cos(x)=3?

2 Answers
May 10, 2018

rarrx=npi+(-1)^n*(sin^(-1)(3/sqrt29))-sin^(-1)(2/sqrt29)x=nπ+(1)n(sin1(329))sin1(229) n inZZ

Explanation:

rarr5sinx+2cosx=3

rarr(5sinx+2cosx)/(sqrt(5^2+2^2))=3/(sqrt(5^2+2^2)

rarrsinx*(5/sqrt(29))+cosx*(2/sqrt(29))=3/sqrt29

Let cosalpha=5/sqrt29 then sinalpha=sqrt(1-cos^2alpha)=sqrt(1-(5/sqrt29)^2)=2/sqrt29

Also, alpha=cos^(-1)(5/sqrt29)=sin^(-1)(2/sqrt29)

Now, given equation transforms to

rarrsinx*cosalpha+cosx*sinalpha=3/sqrt29

rarrsin(x+alpha)=sin(sin^(-1)(3/sqrt29))

rarrx+sin^(-1)(2/sqrt29)=npi+(-1)^n*(sin^(-1)(3/sqrt29))

rarrx=npi+(-1)^n*(sin^(-1)(3/sqrt29))-sin^(-1)(2/sqrt29) n inZZ

May 11, 2018

x = 12^@12 + k360^@
x = 124^@28 + k360^@

Explanation:

5sin x + 2cos x = 3.
Divide both sides by 5.
sin x + 2/5 cos x = 3/5 = 0.6 (1)
Call tan t = sin t/(cos t) = 2/5 --> t = 21^@80 --> cos t = 0.93.
The equation (1) becomes:
sin x.cos t + sin t.cos x = 0.6(0.93)
sin (x + t) = sin (x + 21.80) = 0.56
Calculator and unit circle give 2 solutions for (x + t) -->
a. x + 21.80 = 33.92
x = 33.92 - 21.80 = 12^@12
b. x + 21.80 = 180 - 33.92 = 146.08
x = 146.08 - 21.80 = 124^@28
General answers:
x = 12^@12 + k360^@
x = 124^@28 + k360^@
Check by calculator.
x = 12^@12 --> 5sin x = 1.05 --> 2cos x = 1.95
5sin x + 2cos x = 1.05 + 1.95 = 3. Proved.
x = 124^@28 --> 5sin x = 4.13 --> 2cos x = -1.13
5sin x + 2cos x = 4.13 - 1.13 = 3. Proved.