In a DeltaABC,
rarrcosA=(b^2+c^2-a^2)/(2bc)
rarrArea=(1/2)a*bsinC
Now, Area of DeltaABD=(1/2)*9*8*sinx=36sinx
Area of DeltaADC=(1/2)*8*18*sinx=72sinx
Area of DeltaABC=(1/2)*9*18*sin2x=81sin2x
rarrDeltaABC=DeltaABD+DeltaADC
rarr81sin2x=36*sinx+72*sinx=108*sinx
rarr81*2cancel(sinx)*cosx=108*cancel(sinx)
rarrcosx=(108)/162=2/3
Applying cosine law in DeltaABC, we get,
rarrcos2x=(9^2+18^2-a^2)/(2*9*18)
rarr2cos^2x-1=(405-a^2)/324
rarr2*(2/3)^2-1=(405-a^2)/324
rarr2*(4/9)-1=(405-a^2)/324
rarr-36=405-a^2
rarra^2=405+36=441
rarra=21
Also, note that
rarrsin2x=2sinxcosx
rarrcos2x=2cos^2x-1