How do you evaluate #\int \sqrt { x ^ { 3} } \cdot d x#?

1 Answer
May 13, 2018

let #I=##intsqrt(x^3)dx#
let #x=t^2(=>x^3=t^6)#
#=>dx/dt=2t# or #dx=2tdt#
putting this in the integral we get
#intsqrt(x^3)dx=intsqrt(t^6)*2tdt#
#=intt^3*2tdt=int2t^4dt#
#=2*t^5/5+C#
substitute for #t#
then required integral ,#I=2*(sqrtx)^5/5+C=2x^(5/2)+C#
where #C# is constant of integration