Set y=0=3x^2+2x-3" ".........................Equation(1)
Compare to y=ax^2+bx+c
x=(-b+-sqrt(b^2-4ac))/(2a)
Set a=3; b=2; c=-3
=> x=(-2+-sqrt(2^2-4(3)(-3)))/(2(3))
x=-1/3+-sqrt(40)/6
x=-1/3+-(cancel(2)^1sqrt(10))/cancel(6)^3
x=-1/3+-sqrt(10)/3
x=(-1+sqrt(10))/3 and x=(-1-sqrt(10))/3
(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3) " "..............Equation(2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Testing "Equation(2))
x (x+(1+sqrt(10))/3)color(white)("d") +color(white)("d")(1-sqrt(10))/3 (xcolor(white)("d")+color(white)("ddd")(1+sqrt(10))/3)
x^2+x/3+cancel((xsqrt(10))/3) color(white)("ddd")+color(white)("ddd")x/3-cancel((xsqrt(10))/3)+color(white)("d")(1^2-(sqrt(10))^2)/9
x^2+(2x)/3+1/9-10/9
x^2+(2x)/3-1
So Equation(2) is not the same value as Equation(1) To make it do so multiply everything by 3
y=3(x^2+(2x)/3-1) = 3x^2+2x-3 color(red)(larr" As required"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thus the answer is:
3(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3)" ".........Equation(2_a)