Factorise 3x^2+2x-33x2+2x3 ?

2 Answers
May 13, 2018

y = 3(x + (1 - sqrt10)/3)(x + (1 + sqrt10)/3)y=3(x+1103)(x+1+103)

Explanation:

y = 3x^2 + 2x - 3y=3x2+2x3
D = d^2 = b^2 - 4ac = 4 + 36 = 40D=d2=b24ac=4+36=40 --> d = +- 2sqrt10d=±210
There are 2 real roots:
x1 = -b/(2a) +- d/(2a) = - 2/6 +- (2sqrt10)/6 = - (1 - sqrt10)/3x1=b2a±d2a=26±2106=1103,
x2 = - (1 + sqrt10)/3x2=1+103
Factored form:
y = a(x - x1)(x - x2)y=a(xx1)(xx2)
y = 3(x + (1 - sqrt10)/3)(x + (1 + sqrt10)/3)y=3(x+1103)(x+1+103)

May 13, 2018

3(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3)3(x+1103)(x+1+103)

Solution in great detail.

Explanation:

Set y=0=3x^2+2x-3" ".........................Equation(1)

Compare to y=ax^2+bx+c

x=(-b+-sqrt(b^2-4ac))/(2a)

Set a=3; b=2; c=-3

=> x=(-2+-sqrt(2^2-4(3)(-3)))/(2(3))

x=-1/3+-sqrt(40)/6

x=-1/3+-(cancel(2)^1sqrt(10))/cancel(6)^3

x=-1/3+-sqrt(10)/3

x=(-1+sqrt(10))/3 and x=(-1-sqrt(10))/3

(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3) " "..............Equation(2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Testing "Equation(2))

x (x+(1+sqrt(10))/3)color(white)("d") +color(white)("d")(1-sqrt(10))/3 (xcolor(white)("d")+color(white)("ddd")(1+sqrt(10))/3)

x^2+x/3+cancel((xsqrt(10))/3) color(white)("ddd")+color(white)("ddd")x/3-cancel((xsqrt(10))/3)+color(white)("d")(1^2-(sqrt(10))^2)/9

x^2+(2x)/3+1/9-10/9

x^2+(2x)/3-1

So Equation(2) is not the same value as Equation(1) To make it do so multiply everything by 3

y=3(x^2+(2x)/3-1) = 3x^2+2x-3 color(red)(larr" As required"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Thus the answer is:

3(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3)" ".........Equation(2_a)