How do you solve -32- 4n = 5( n - 1)324n=5(n1)?

2 Answers
May 14, 2018

n = -3n=3

Explanation:

-32 - 4n = 5(n - 1)324n=5(n1)

First, distribute 5 to (n -1), per PEMDAS. You should now have:

-32 - 4n = 5n - 5324n=5n5

We want to negate the lowest variable in order to solve for n. Add 4n to each side to negate -4n. You should now have:

-32 = 9n - 532=9n5

Add 5 to each side to negate -5.

-27 = 9n27=9n

Divide by 9 to isolate for n.

-27/9279 = -33 = nn

nn = -33

May 14, 2018

n = -3n=3

Explanation:

To solve for the variable nn in the equation #-32-4n=5(n-1)

Begin by using the distributive property to eliminate the parenthesis.

#-32 -4n =5(n-1)

-32 - 4n = 5n - 5324n=5n5

Now use the additive inverse to place the variable terms on the same side of the equation.

-32 - 4n -5n = cancel(5n) - 5 cancel (-5n)

-32 -9n = -5

Now use the additive inverse to place the numeric terms on the same side of the equation.

cancel(-32) -9n cancel (+32) = -5 +32

-9n = 27

Use the multiplicative inverse to isolate the variable.

((cancel-9)n)/(cancel(-9)) = 27/-9

n = -3