How to find all solutions to the following equations in the interval 0 ≤ θ < 2π?

Find all solutions to the following equations in the interval 0 ≤ θ < 2π. Give the exact value of the solution(s) where possible. If not possible, round your answer to
4 decimal places.

tan θ − 2 cos θ sin θ = 0

1 Answer
May 16, 2018

0,π4,3π4,π,5π4,7π4,2π

Explanation:

tan t - 2sin t.cos t = 0
sintcost2sint.cost=0
sint2sint.cos2t=0
Condition cost0
sint(12cos2t)=0
Use trig identity: 12cos2t=cos2t
sint.cos2t=0
Either factor should be zero.
a. sint=0 --> t=kπ
For(0,2π) the answers are: t=0;t=π; and t=2π
b. cos2t=0 --> Unit circle gives 2 solutions for 2t:
2t=π2+2kπ, and 2t=3π2+2kπ
1. 2t=π2+2kπ
t=π4+kπ
For (0,2π), the answers are:
t=π4, and t=π4+π=5π4
2. 2t=3π2+2kπ
t=3π4+kπ
For (0,2π), the answers are:
t=3π4, and t=3π4+π=7π4