1 The sum of the three smallest positive values of theta such that 4(cos*theta)(sin*theta) = 1 is k*pi. Find k?

3 Answers
May 16, 2018

4costhetasintheta = 1

=>2costhetasintheta = 1/2

=>sin2theta = sin(pi/6)

=>2theta=npi+(-1)^n*(pi/6)

=>theta=1/2(npi+(-1)^n*(pi/6)) "where "ninZZ

When n=0totheta=pi/12

When n=1totheta=(5pi)/12

When n=2totheta=(13pi)/12

By the condition of the problem

pi/12+(5pi)/12+(13pi)/12=kpi

So k=19/12

May 16, 2018

k = (19)/12

Explanation:

We can rewrite as

2costhetasintheta = 1/2

sin(2theta) = 1/2

Now I'm assuming that we're only consider values of theta greater than 0.

2theta = pi/6, (5pi)/6, (13pi)/6

theta = pi/12, (5pi)/12, (13pi)/12

Now you just have to add the values up

theta_"sum" = (19pi)/12

Therefore k = 19/12

Hopefully this helps!

May 16, 2018

k=19/12

Explanation:

Here,

4costhetasintheta=1

=>2sinthetacostheta=1/2

=>sin2theta==1/2 > 0=>I^(st) Quadrant orII^(nd)Quadrant

=>2theta=pi/6,(pi-pi/6),(2pi+pi/6),(3pi-pi/6),(4pi+pi/6),...

=>2theta=pi/6,(5pi)/6,(13pi)/6,(17pi)/6,(25pi)/6,(29pi)/6,...

=>theta=pi/12,(5pi)/12,(13pi)/12,(17pi)/12,...

The sum of the three smallest positive values of theta =kpi

So,

pi/12+(5pi)/12+(13pi)/12=kpi

=>(pi+5pi+13pi)/12=kpi

=>(19pi)/12=kpi

=>19/12=k

i.e. k=19/12~~1.5833