SOLVE to the nearest four decimals?


3(cotx)2+cotx=1

2 Answers
May 17, 2018

x=623393+k180
3x=422363+k180

Explanation:

Method 1
3(cos2xsin2x)+cosxsinx=1
3.cos2x+sinx.cosx=sin2x
Divide both side by cos x, (condition cos x != 0)
3+tanx=tan2x
tan2xtanx3=0
Solve this quadratic equation for tan x.
D = d^2 = b^2 - 4ac = 1 + 4sqrt3 = 7.9282 --> d=±2.8157
There are 2 real roots:
tanx=b2a±d2a=12±2.81572
tanx=0.5+1.4079=1.9079
tanx=0.51.4079=0.9079
a. tanx=1.9079
Calculator and unit circle give:
x=623393+k180
b. tanx=0.9079
x=422363+k180

May 17, 2018

x=623405+k180
x=422614+k180

Explanation:

Method 2
Call cot x = t, we get a quadratic equation to solve:
3t2+t1=0
D=d2=b24ac=1+43=7.9282 --> d=±2.8157
There are 2 real roots:
t=b2a±d2a=123±2.815723=
=0.2887±0.8128
cot x = t = 0.5241 --> tanx=1.9080
cot x = t = - 1.1015 --> tanx=0.9078
a. tan x = 1.9080
x=623405+k180
b. tan x = - 0.9087
3x=422614+k180