Improper integrals ? int_e^oo(1)/(x*(ln x)^3)dx

int_e^oo(1)/(x*(ln x)^3)dx

2 Answers
May 17, 2018

1/2

Explanation:

First find int 1/(x (lnx ) ^3) dx

= int 1/x * 1/(lnx)^3 dx

Let u = lnx

du = 1/x dx

=> int 1/u^3 du

=> int u^(-3) du

= -1/2 u^(-2) + c

= -1/(2 (lnx)^2 ) + c

int_e ^oo 1/(x (lnx ) ^3) dx = lim_(alpha to oo ) int_e ^ alpha 1/(x (lnx ) ^3) dx

=> lim_(alpha to oo) [ -1/( 2 (lnx)^2 ) ]_e ^ alpha

=> lim_(alpha to oo) {-1/(2(lna)^2 ) - ( -1/2 )}

as alpha to oo, ln(alpha) to oo => 1/(ln(a) ) to 0

= 1/2

May 17, 2018

The answer is =1/2

Explanation:

First, calculate the indefinite integral by substitution

Let u=lnx, =>, du=(dx)/x

Then, the integral is

I=int(dx)/(x ln^3x)=int(du)/(u^3)

=-1/(2u^2)

=-1/(2ln^2x)+C

Therefore, the improper integral is

lim_(p->+oo)int_e ^p(dx)/(x ln^3x)

=lim_(p->+oo)[-1/(2ln^2x)]_e ^ p

=lim_(p->+oo)((-1/(2ln^2p))-(-1/(2ln^2e)))

=lim_(p->+oo)(1/2-1/(2ln^2p))

=1/2