Improper integrals ? #int_e^oo(1)/(x*(ln x)^3)dx#

#int_e^oo(1)/(x*(ln x)^3)dx#

2 Answers
May 17, 2018

#1/2#

Explanation:

First find # int 1/(x (lnx ) ^3) dx#

# = int 1/x * 1/(lnx)^3 dx #

Let # u = lnx #

#du = 1/x dx#

#=> int 1/u^3 du #

#=> int u^(-3) du#

# = -1/2 u^(-2) + c #

# = -1/(2 (lnx)^2 ) + c #

# int_e ^oo 1/(x (lnx ) ^3) dx = lim_(alpha to oo ) int_e ^ alpha 1/(x (lnx ) ^3) dx#

#=> lim_(alpha to oo) [ -1/( 2 (lnx)^2 ) ]_e ^ alpha #

# => lim_(alpha to oo) {-1/(2(lna)^2 ) - ( -1/2 )} #

as #alpha to oo, ln(alpha) to oo # # => 1/(ln(a) ) to 0 #

#= 1/2 #

May 17, 2018

The answer is #=1/2#

Explanation:

First, calculate the indefinite integral by substitution

Let #u=lnx#, #=>#, #du=(dx)/x#

Then, the integral is

#I=int(dx)/(x ln^3x)=int(du)/(u^3)#

#=-1/(2u^2)#

#=-1/(2ln^2x)+C#

Therefore, the improper integral is

#lim_(p->+oo)int_e ^p(dx)/(x ln^3x)#

#=lim_(p->+oo)[-1/(2ln^2x)]_e ^ p#

#=lim_(p->+oo)((-1/(2ln^2p))-(-1/(2ln^2e)))#

#=lim_(p->+oo)(1/2-1/(2ln^2p))#

#=1/2#