How do I solve for 0 <= x < 2pi? tan x - sec x +1 = 0

1 Answer
May 19, 2018

x = 0

Explanation:

tanxsecx+1=0
sinxcosx1cosx+1=0
sinx1+cosx=0 (1) (condition cosx0,andxπ2)
Reminder:
sinx+cosx=2cos(xπ4)
Equation (1) becomes:
sinx+cosx=2cos(xπ4)=1
cos(xπ4)=12
Trig unit circle and property of cos x function -->
xπ4=±π4
a. xπ4=π4
x=π4+π4=π2
This answer is rejected because of the above condition: xπ2
b. xπ4=π4
x = 0.
Check.
x = 0 --> tan x = 0 --> cos x = 1 --> sec x = 1
tan x - sec x + 1 = 0 - 1 + 1 = 0. Proved.