How do you solve this equation: csc^4 2(u)-4=0 ?

i use the inverse that is sin?

2 Answers
May 20, 2018

Given csc^4(2u) -4 = 0csc4(2u)4=0

Factor as a^2-b^2 = (a+b)(a-b)a2b2=(a+b)(ab) where a = cos^2(2u)a=cos2(2u) and b = 4b=4

(csc^2(2u) -2)(csc^2(2u)+2) = 0(csc2(2u)2)(csc2(2u)+2)=0

To find the values where the above equation is true, we must set both factors equal to 0:

csc^2(2u) -2 = 0 and csc^2(2u)+2 = 0csc2(2u)2=0andcsc2(2u)+2=0

Substitute csc^2(2u) = 1/sin^2(2u)csc2(2u)=1sin2(2u)

1/sin^2(2u) -2 = 0 and 1/sin^2(2u)+2 = 01sin2(2u)2=0and1sin2(2u)+2=0

Add two to both sides of the first equation and subtract 2 from both sides of the second equation:

1/sin^2(2u) =2 and 1/sin^2(2u)=-21sin2(2u)=2and1sin2(2u)=2

Invert both sides of both equations:

sin^2(2u) =1/2 and sin^2(2u)=-1/2sin2(2u)=12andsin2(2u)=12

Take the square root of both sides of both equations:

sin(2u) =+-sqrt2/2 and sin(2u)=+-sqrt2/2isin(2u)=±22andsin(2u)=±22i

Take the inverse sine of both sides:

2u =+-sin^-1(sqrt2/2) and 2u=+-sin(sqrt2/2i)2u=±sin1(22)and2u=±sin(22i)

The first equation is well known but the second equation becomes the inverse hyperbolic sine:

2u =+-pi/4 and 2u=+-isinh^-1(sqrt2/2)2u=±π4and2u=±isinh1(22)

It will be periodic at integer multiples of piπ"

2u =npi +-pi/4 and 2u= npi+-isinh^-1(sqrt2/2), n in ZZ

Divide by 2:

u =npi/2+-pi/8 and u=npi/2+-i1/2sinh^-1(sqrt2/2)

May 20, 2018

pi/8 + kpi; and (3pi)/8 + kpi
(5pi)/8 + kpi; and (7pi)/8 + kpi

Explanation:

csc u = 1/sin u
1/(sin^4 2u) = 4
1/sin^2 2u = 2
sin^2 2u = 1/2
sin 2u = +- 1/sqrt2
Trig table and unit circle give 4 solutions:
1. sin 2u = 1/sqrt2 -->
2u = pi/4 and 2u = (3pi)/4
a. 2u = pi/4 + 2kpi --> u = pi/8 + kpi
b. 2u = (3pi)/4 + 2kpi --> u = (3pi)/8 + kpi
2. sin 2u = - 1/sqrt2 -->
2u = - pi/4, or 2u = (7pi)/4, (co-terminal), and
2u = pi - (-pi/4) = pi + pi/4 = (5pi)/4
a. 2u = (5pi)/4 --> u = (5pi)/8 + kpi
b. 2u = (7pi)/4 + 2kpi --> u = (7pi)/8 + kpi