How do you find sin if tan is 4?

2 Answers
May 20, 2018

See below

Explanation:

We know that sin^2x+cos^2x=1sin2x+cos2x=1

Dividing by cos^2xcos2x last identity we have

tan^2x+1=sec^2x=1/cos^2xtan2x+1=sec2x=1cos2x

Then 16+1=1/cos^2x16+1=1cos2x then cos^2x=1/17cos2x=117

And applying first identity

sin^2x+1/17=1sin2x+117=1

sin^2x=1-1/17=16/17sin2x=1117=1617

sinx=sqrt16/sqrt17=4/sqrt17sinx=1617=417

May 20, 2018

sin x = +- 4/sqrt17 = (4sqrt17)/17sinx=±417=41717

Explanation:

Use trig identity:
sin^2 x = 1/(1 + cot^2 x)sin2x=11+cot2x
In this case tan x = 4 --> cot x = 1/4cotx=14
sin^2 x = 1/(1 + 1/16) = 16/17sin2x=11+116=1617
sin x = +- 4/sqrt17sinx=±417
tan x = 4 --> x could be in Quadrant 1 or Quadrant 3, therefor
sin x could be positive or negative.