How do you convert y=x-2y+xy^2 into a polar equation?

1 Answer
May 21, 2018

r=(costheta-sintheta)/((2-costheta)sinthetacostheta)

Explanation:

y=x-2y+xy^2
x=rcostheta
y=rsintheta
Thus,
rsintheta=rcostheta-2rcosthetaxxrsintheta+rcosthetaxx(rsintheta)^2

rsintheta=rcostheta-2r^2sinthetacostheta+r^2sin^2thetacostheta

rsintheta-rcostheta=r^2(-2sinthetacostheta+sin^2thetacostheta)

r(sintheta-costheta)=r^2sinthetacostheta(-2+costheta)

r(sintheta-costheta)+r^2sinthetacostheta(2-costheta)

r(sintheta-costheta+rsinthetacostheta(2-costheta))=0

r=0

sintheta-costheta+rsinthetacostheta(2-costheta)=0

rsinthetacostheta(2-costheta)=costheta-sintheta
r=(costheta-sintheta)/((2-costheta)sinthetacostheta)