If cos A = -4/5 how do you find tan 2A?

2 Answers
May 21, 2018

­±40/7 * 3/5 = ± 24/7

Explanation:

cos x = -4/5

tan 2x = frac{sin 2x}{cos 2x} = frac{2 sin x cos x}{cos^2 x - underbrace{sin^2 x}_{1 - cos^2 x}} = frac{-2 * sin x * 4/5}{2 * 16/25 - 1}

± sin x = sqrt {1 - 16/25} = sqrt{{25-16}/25} = 3/5

tan 2x = -8/5 * sin x * 25/{32-25} = -40/7 sin x

May 22, 2018

24/7

Explanation:

cos A = -4/5.
A could be in Quadrant 2 or Quadrant 3.
sin^2 A = 1 - cos^2 A = 1 - 16/25 = 9/25
sin A = +- 3/5
sin 2A = 2sin A.cos A = 2(+- 3/5)(- 4/5) = +- 24/25
cos ^ 2A = 1 - sin^2 2A = 1 - (576/625) = 49/625
cos 2A = +- 7/25
tan 2A = (sin 2A)/(cos 2A) = (+- 24/25)(+- 25/7) = +- 24/7
If A lies in Quadrant 2, then, 2A lies in Quadrant 3, and tan 2A is positive
If A lies in Q. 3, then, 2A lies in Q. 1, then, tan 2A is positive.
Finally
tan 2A = 24/7