We have: #tan(theta) + sec(theta) = 1#
#Rightarrow frac(sin(theta))(cos(theta)) + frac(1)(cos(theta)) = 1#
#Rightarrow frac(sin(theta) + 1)(cos(theta)) = 1#
#Rightarrow sin(theta) + 1 = cos(theta)#
#Rightarrow sin(theta) - cos(theta) = - 1#
Then, let's consider #sin(theta) - cos(theta) = R cos(theta + alpha)#.
We can expand the right-hand side using the compound angle identity for #cos(theta)#:
#Rightarrow sin(theta) - cos(theta) = R (cos(theta) cos(alpha) - sin(theta) sin(alpha))#
#Rightarrow sin(theta) - cos(theta) = R cos(theta) cos(alpha) - R sin(theta) sin(alpha)#
#Rightarrow sin(theta) - cos(theta) = R cos(alpha) cos(theta) - R sin(alpha) sin(theta)#
If we compare the coefficients of #sin(theta)# and #cos(theta)#, we get:
#Rightarrow 1 = - R sin(alpha) Rightarrow R sin(alpha) = - 1 " " " " " "# #(i)#
and
#Rightarrow - 1 = R cos(alpha) Rightarrow R cos(alpha) = - 1 " " " " " "# #(ii)#
If we divide #(i)# by #(ii)#, we get:
#Rightarrow frac(R sin(alpha))(R cos(alpha)) = frac(- 1)(- 1)#
#Rightarrow tan(alpha) = 1#
#Rightarrow alpha = frac(pi)(4)#
If we sum the squares of #(i)# and #(ii)#, we get:
#Rightarrow R^(2) sin^(2)(alpha) + R^(2) cos^(2)(alpha) = 1 + 1#
#Rightarrow R^(2) (cos^(2)(alpha) + sin^(2)(alpha)) = 2#
#Rightarrow R^(2) = 2#
#Rightarrow R = sqrt(2)#
So, we can write #sin(theta) - cos(theta)# in the form #sqrt(2) cos(theta + frac(pi)(4))#, i.e. in our original problem we get #sqrt(2) cos(theta + frac(pi)(4)) = - 1#:
#Rightarrow cos(theta + frac(pi)(4)) = - frac(1)(sqrt(2)) = - frac(sqrt(2))(2)#
Now, let the reference angle be #cos(theta) = frac(sqrt(2))(2) Rightarrow theta = frac(pi)(4)#.
But the value of #cos(theta + frac(pi)(4))# is negative, so #theta# must be located in either the second or third quadrant:
#Rightarrow theta + frac(pi)(4) = pi - frac(pi)(4), pi + frac(pi)(4)#
#Rightarrow theta + frac(pi)(4) = frac(3 pi)(4), frac(5 pi)(4)#
#Rightarrow theta = frac(pi)(2), pi#
As you have not specified a domain that #theta# must be located within, we can give the general solutions to the equation as:
#therefore theta = frac(pi)(2) pm 2 pi n, pi pm 2 pi n#; #n in ZZ#