4cos^2 x - 2 = sec^2 x - tan^2 x4cos2x−2=sec2x−tan2x (1)
Develop the right side:
RS = 1/(cos^2 x) - sin^2 x/(cos^2 x) = (1 - sin^2 x)/(cos^2 x) = cos^2 x/(cos^2 x) = 1RS=1cos2x−sin2xcos2x=1−sin2xcos2x=cos2xcos2x=1
The equation (1) becomes:
4cos^2 x - 2 = 14cos2x−2=1
cos^2 x = 3/4cos2x=34
cos x = +- sqrt3/2cosx=±√32
a. cos x = sqrt3/2cosx=√32
Trig table and unit circle give 2 solutions of x -->
x = +- pi/6x=±π6
b. cos x = - sqrt3/2cosx=−√32 -->
x = +- (2pi)/3x=±2π3
Inside the interval (pi, 2pi)(π,2π), the answers are:
x = - pi/6x=−π6, or x = (11pi)/6x=11π6 (co-terminal)
x = - (2pi)/3x=−2π3, or x = pi + pi/3 = (4pi)/3x=π+π3=4π3 (co-terminal)