Answer the following questions: Please refer to the questions in the image: Thank you?

enter image source here

1 Answer
May 23, 2018

a) #color(blue)[lim_(xrarr3^-)(x+3)/(x^2-9)=-oo]#
b)#color(red)[lim_(xrarr-4^+)(9x)/(16-x^2)=oo#

Explanation:

i will solve question 1

a) #color(blue)[lim_(xrarr3^-)(x+3)/(x^2-9)]#

take a number from left of 3 like 2.9

now offset it in the limit #lim_(xrarr3^-)(x+3)/(x^2-9)#

if the sign of the limit equal #-# that mean the value of limit equal #-oo# ,but if the sign of the limit equal #+# that mean the limit equal #+oo#

#lim_(xrarr3^-)(x+3)/(x^2-9)=(2.9+3)/(8.41-9)=+/(-)=-#

#lim_(xrarr3^-)(x+3)/(x^2-9)=-oo#

b)#color(red)[lim_(xrarr-4^+)(9x)/(16-x^2)#

take a number from right of -4 like -4.1

offset it in the limit #lim_(xrarr-4^+)(9x)/(16-x^2)#

we will get

#lim_(xrarr-4^+)(9x)/(16-x^2)=(-36.9)/(16-16.81)=-/(-)=+#

#lim_(xrarr-4^+)(9x)/(16-x^2)=oo#