What is (6x^{4} - 5x^{3} - 18x^{2} - 5x + 2) -:( 3x + 22)?

1 Answer
May 23, 2018

2x^3-(49x^2)/3+(1024x)/9-22573/27+496660/(27(3x+22))

Explanation:

This is quite long and I hope you can follow this through.

(6x^4)/(3x)=2x^3 (this is our first term)

2x^3(3x+22)=6x^4+44x^2

6x^4-5x^3-18x^2-5x+2-(6x^4+44x^2)=6x^4-5x^3-18x^2-5x+2-6x^4-44x^2=-49x^3-18x^2-5x+2

-(49x^3)/(3x)=-(49x^2)/3 (this is our second term)

-(49x^2)/3(3x+22)=-(49x^2)/3-(1078x^2)/3

-49x^3-18x^2-5x+2-(-(49x^2)/3-(1078x^2)/3)=-49x^3-18x^2-5x+2+(49x^2)/3+(1078x^2)/3=(1024x^2)/3-5x+2

((1024x^2)/3)/(3x)=(1024x)/9 (this is our third term)

(1024x)/9(3x+22)=(1024x^2)/3+(22528x)/9

(1024x^2)/3-5x+2-((1024x^2)/3+(22528x)/9)=(1024x^2)/3-5x+2-(1024x^2)/3-(22528x)/9=-(22573x)/9+2

-((22573x)/9)/(3x)=-22573/27 (this is our fourth term)

-22573/27(3x+22)=-(22573x)/27-496606/27

-(22573x)/9+2-(-(22573x)/27-496606/27)=-(22573x)/9+2+(22573x)/27+496606/27=496660/27

496660/(27(3x+22)) (this is our final term)

This gives us:
2x^3-(49x^2)/3+(1024x)/9-22573/27+496660/(27(3x+22))