a.
First, let's express l_(1) and l_(2) in component form:
l_(1): (9 + lambda) bb(i) + (13 + 4 lambda) bb(j) + (- 3 - 2 lambda) bb(k)
l_(2): (2 + 2 mu) bb(i) + (- 1 + mu) bb(j) + (1 + mu) bb(k)
Then, for intersection, the individual components of l_(1) and l_(2) must be equal to each other:
Rightarrow 9 + lambda = 2 + 2 mu " " " " " " " " (i)
Rightarrow 13 + 4 lambda = - 1 + mu " " " " (ii)
Rightarrow - 3 - 2 lambda = 1 + mu " " " " (iii)
Let's subtract (ii) from (iii):
Rightarrow (- 3 - 2 lambda) - (13 + 4 lambda) = (1 + mu) - (- 1 + mu)
Rightarrow - 16 - 6 lamda = 2
Rightarrow 6 lamda = - 18
Rightarrow lambda = - 3
Using (ii):
Rightarrow 13 + 4 (- 3) = - 1 + mu
Rightarrow 13 - 12 = - 1 + mu
Rightarrow 1 = - 1 + mu
Rightarrow mu = 2
Now, we need to check for consistency using (i):
Rightarrow 9 + (- 3) = 2 + 2 (2)
Rightarrow 9 - 3 = 2 + 4
Rightarrow 6 = 6
Then, let's use l_(1) to find the position vector of the point of intersection:
Rightarrow "Position vector" = (9 + (-3)) bb(i) + (13 + 4 (- 3)) bb(j) + (- 3 - 2 (- 3)) bb(k)
therefore "Position vector" = 6 bb(i) + 13 bb(j) + 3 bb(k)
"
b.
The angle between two lines is the angle between their direction vectors.
In this case, the two direction vectors are bb(i) + 4 bb(j) - 2 bb(k) and 2 bb(i) + bb(j) + bb(k).
The angle can be found using cos(theta) = frac(A cdot B)(|A| |B|):
Rightarrow cos(theta) = frac((bb(i) + 4 bb(j) - 2 bb(k)) cdot (2 bb(i) + bb(j) + bb(k)))(|bb(i) + 4 bb(j) - 2 bb(k)| |2 bb(i) + bb(j) + bb(k)|)
Rightarrow cos(theta) = frac((1)(2) + (4)(1) + (- 2)(1))(sqrt(1^(2) + 4^(2) + (- 2)^(2)) cdot sqrt(2^(2) + 1^(2) + 1^(2)))
Rightarrow cos(theta) = frac(4)(sqrt(21) cdot sqrt(6)) = frac(4)(sqrt(126))
Rightarrow theta = arccos(frac(4)(sqrt(126)))
therefore theta = 69.1^(circ)
"
c.
Let's consider the point P to have coordinates (x, y, z).
Then, the line AP will have direction vector (x - 4) bb(i) + (y - 16) bb(j) + (z + 3) bb(k).
Since AP is perpendicular to l_(1), the dot product of this direction vector and the direction vector of l_(1) will be equal to zero:
Rightarrow ((x - 4) bb(i) + (y - 16) bb(j) + (z + 3) bb(k)) cdot (bb(i) + 4 bb(j) - 2 bb(k)) = 0
Rightarrow x - 4 + 4 y - 64 - 2 z - 6 = 0
Rightarrow x + 4 y - 2 z = 74
Also, we have that:
x = 9 + lambda
y = 13 + 4 lambda
z = - 3 - 2 lambda
Substituting these into the above equation we get:
Rightarrow (9 + lambda) + 4 (13 + 4 lambda) - 2 (- 3 - 2 lambda) = 74
Rightarrow 9 + lambda + 52 + 16 lambda + 6 + 4 lambda = 74
Rightarrow 21 lambda = 7
Rightarrow lambda = frac(1)(3)
So the coordinates are given by:
x = 9 + (frac(1)(3)) = frac(28)(3)
y = 13 + 4 (frac(1)(3)) = frac(43)(3)
z = - 3 - 2 (frac(1)(3)) = - frac(11)(3)
Therefore, the coordinates of the point P are (frac(28)(3), frac(43)(3), - frac(11)(3)).