Vectors question?

With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations:
l_1: bb(r)=(9bb(i)+13bb(j)-3bb(k))+lambda(bb(i)+4bb(j)-2bb(k))
l_2: bb(r)=(2bb(i)-bb(j)+bb(k))+mu(2bb(i)+bb(j)+bb(k))

where lambda and mu are scalar parameters.

a. Given l_1 and l_2 meet, find the position vector of their point of intersection.

b. Find the acute angle between l_1 and l_2, giving your answer in degrees to 1 decimal place.

c. Given that the point A has position vector 4bbi+16bbj-3bbk and that the point P lies on l_1 such that AP is perpendicular to l_1, find the exact coordinates of P.

1 Answer
May 23, 2018

a. 6 bb(i) + 13 bb(j) + 3 bb(k)

b. 69.1^(circ)

c. P (frac(28)(3), frac(43)(3), - frac(11)(3))

Explanation:

a.

First, let's express l_(1) and l_(2) in component form:

l_(1): (9 + lambda) bb(i) + (13 + 4 lambda) bb(j) + (- 3 - 2 lambda) bb(k)

l_(2): (2 + 2 mu) bb(i) + (- 1 + mu) bb(j) + (1 + mu) bb(k)

Then, for intersection, the individual components of l_(1) and l_(2) must be equal to each other:

Rightarrow 9 + lambda = 2 + 2 mu " " " " " " " " (i)

Rightarrow 13 + 4 lambda = - 1 + mu " " " " (ii)

Rightarrow - 3 - 2 lambda = 1 + mu " " " " (iii)

Let's subtract (ii) from (iii):

Rightarrow (- 3 - 2 lambda) - (13 + 4 lambda) = (1 + mu) - (- 1 + mu)

Rightarrow - 16 - 6 lamda = 2

Rightarrow 6 lamda = - 18

Rightarrow lambda = - 3

Using (ii):

Rightarrow 13 + 4 (- 3) = - 1 + mu

Rightarrow 13 - 12 = - 1 + mu

Rightarrow 1 = - 1 + mu

Rightarrow mu = 2

Now, we need to check for consistency using (i):

Rightarrow 9 + (- 3) = 2 + 2 (2)

Rightarrow 9 - 3 = 2 + 4

Rightarrow 6 = 6

Then, let's use l_(1) to find the position vector of the point of intersection:

Rightarrow "Position vector" = (9 + (-3)) bb(i) + (13 + 4 (- 3)) bb(j) + (- 3 - 2 (- 3)) bb(k)

therefore "Position vector" = 6 bb(i) + 13 bb(j) + 3 bb(k)

"

b.

The angle between two lines is the angle between their direction vectors.

In this case, the two direction vectors are bb(i) + 4 bb(j) - 2 bb(k) and 2 bb(i) + bb(j) + bb(k).

The angle can be found using cos(theta) = frac(A cdot B)(|A| |B|):

Rightarrow cos(theta) = frac((bb(i) + 4 bb(j) - 2 bb(k)) cdot (2 bb(i) + bb(j) + bb(k)))(|bb(i) + 4 bb(j) - 2 bb(k)| |2 bb(i) + bb(j) + bb(k)|)

Rightarrow cos(theta) = frac((1)(2) + (4)(1) + (- 2)(1))(sqrt(1^(2) + 4^(2) + (- 2)^(2)) cdot sqrt(2^(2) + 1^(2) + 1^(2)))

Rightarrow cos(theta) = frac(4)(sqrt(21) cdot sqrt(6)) = frac(4)(sqrt(126))

Rightarrow theta = arccos(frac(4)(sqrt(126)))

therefore theta = 69.1^(circ)

"

c.

Let's consider the point P to have coordinates (x, y, z).

Then, the line AP will have direction vector (x - 4) bb(i) + (y - 16) bb(j) + (z + 3) bb(k).

Since AP is perpendicular to l_(1), the dot product of this direction vector and the direction vector of l_(1) will be equal to zero:

Rightarrow ((x - 4) bb(i) + (y - 16) bb(j) + (z + 3) bb(k)) cdot (bb(i) + 4 bb(j) - 2 bb(k)) = 0

Rightarrow x - 4 + 4 y - 64 - 2 z - 6 = 0

Rightarrow x + 4 y - 2 z = 74

Also, we have that:

x = 9 + lambda

y = 13 + 4 lambda

z = - 3 - 2 lambda

Substituting these into the above equation we get:

Rightarrow (9 + lambda) + 4 (13 + 4 lambda) - 2 (- 3 - 2 lambda) = 74

Rightarrow 9 + lambda + 52 + 16 lambda + 6 + 4 lambda = 74

Rightarrow 21 lambda = 7

Rightarrow lambda = frac(1)(3)

So the coordinates are given by:

x = 9 + (frac(1)(3)) = frac(28)(3)

y = 13 + 4 (frac(1)(3)) = frac(43)(3)

z = - 3 - 2 (frac(1)(3)) = - frac(11)(3)

Therefore, the coordinates of the point P are (frac(28)(3), frac(43)(3), - frac(11)(3)).