How to integrate #int(e^2x+e^-2x)/(e^2x-e^-2x)dx?

3 Answers
May 23, 2018

We can rewrite as

I = int (e^(2x) + 1/e^(2x))/(e^(2x) - 1/e^(2x)) dxI=e2x+1e2xe2x1e2xdx

I = int((e^(4x) + 1)/e^(2x))/((e^(4x) - 1)/e^(2x)) dxI=e4x+1e2xe4x1e2xdx

I = int(e^(4x) + 1)/(e^(4x) - 1)dxI=e4x+1e4x1dx

Let u = 4xu=4x. Then du = 4dxdu=4dx and dx= (du)/4dx=du4

I = 1/4 int (e^u + 1)/(e^u - 1)duI=14eu+1eu1du

Now use partial fractions.

A/(e^u - 1) + B/1 = (e^u + 1)/(e^u - 1)Aeu1+B1=eu+1eu1

A + Be^u - B = e^u + 1A+BeuB=eu+1

We can readily see that B = 1B=1 and therefore A = 2A=2.

Thus

I = 1/4(int 2/(e^u - 1) + 1 du)I=14(2eu1+1du)

I = 1/2ln|e^u - 1| + 1/4u + CI=12ln|eu1|+14u+C

I = 1/2ln|e^(4x) - 1| + x + CI=12lne4x1+x+C

Hopefully this helps!

May 23, 2018

The answer is =1/2ln(1/2(|e^(2x)-e^-(2x)|)+C=12ln(12(e2xe(2x))+C

Explanation:

The function is

((e^(2x)-e^-(2x)))/((e^(2x)-e^-(2x)))=coth(2x)=cosh(2x)/sinh(2x)(e2xe(2x))(e2xe(2x))=coth(2x)=cosh(2x)sinh(2x)

Therefore, the integral is

I=int((e^(2x)-e^-(2x))dx)/(e^(2x)-e^-(2x))I=(e2xe(2x))dxe2xe(2x)

=intcoth(2x)dx=coth(2x)dx

=int(cosh(2x)dx)/sinh(2x)=cosh(2x)dxsinh(2x)

Let u=sinh(2x)u=sinh(2x), =>, du=2cosh(2x)dxdu=2cosh(2x)dx

So, the integral is

I=1/2int(du)/(u)I=12duu

=1/2ln(u)=12ln(u)

=1/2ln(sinh(2x))+C=12ln(sinh(2x))+C

=1/2ln(1/2(|e^(2x)-e^-(2x)|)+C=12ln(12(e2xe(2x))+C

May 23, 2018

We have,

int (e^(2x) + e^(-2x))/(e^(2x) - e^(-2x))dxe2x+e2xe2xe2xdx

Let's Substitute u = e^(2x) - e^(-2x)u=e2xe2x.

So, du = 2e^(2x) - (-2e^(-2x))dx rArr du = 2e^(2x) + 2e^(-2x)dxdu=2e2x(2e2x)dxdu=2e2x+2e2xdx

rArr dx = 1/(2e^(2x) + 2e^(-2x)) dudx=12e2x+2e2xdu

So,

int (e^(2x) + e^(-2x))/(e^(2x) - e^(-2x))dxe2x+e2xe2xe2xdx

= int cancel(e^(2x) + e^(-2x))/u xx (1/(2cancel((e^(2x) + e^(-2x))))) du

= 1/2 int 1/(u) du

= 1/2 ln|u| + C

= 1/2 ln|e^(2x) - e^(-2x)| + C

= 1/2 ln|e^(-2x)(e^(4x) - 1)| + C

= 1/2 ln |e^(-2x)| + 1/2 ln|e^(4x) - 1| + C

= 1/2 xx -2x + 1/2 ln|e^(4x) - 1| + C

= 1/2 ln|e^(4x) - 1| - x + C

Hope this helps.