How to integrate #int(e^2x+e^-2x)/(e^2x-e^-2x)dx?
3 Answers
We can rewrite as
I = int (e^(2x) + 1/e^(2x))/(e^(2x) - 1/e^(2x)) dxI=∫e2x+1e2xe2x−1e2xdx
I = int((e^(4x) + 1)/e^(2x))/((e^(4x) - 1)/e^(2x)) dxI=∫e4x+1e2xe4x−1e2xdx
I = int(e^(4x) + 1)/(e^(4x) - 1)dxI=∫e4x+1e4x−1dx
Let
I = 1/4 int (e^u + 1)/(e^u - 1)duI=14∫eu+1eu−1du
Now use partial fractions.
A/(e^u - 1) + B/1 = (e^u + 1)/(e^u - 1)Aeu−1+B1=eu+1eu−1
A + Be^u - B = e^u + 1A+Beu−B=eu+1
We can readily see that
Thus
I = 1/4(int 2/(e^u - 1) + 1 du)I=14(∫2eu−1+1du)
I = 1/2ln|e^u - 1| + 1/4u + CI=12ln|eu−1|+14u+C
I = 1/2ln|e^(4x) - 1| + x + CI=12ln∣∣e4x−1∣∣+x+C
Hopefully this helps!
The answer is
Explanation:
The function is
Therefore, the integral is
Let
So, the integral is
We have,
Let's Substitute
So,
So,
Hope this helps.